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Abstract-The Kolmogorov-Prandtl turbulence energy hypothesis is formulated in a way which is valid 
for the laminar sublayer as well as the fully turbulent region of a one-dimensional flow. The necessary 
constants are fitted to available experimental data. Numerical solutions are obtained for Couette flow 
with turbulence au~entation and pressure gradient and for turbulent duct flow. Reasonable agreement 
with available experimental data is obtained. Some new dimensionless groups are used and shown to be 
superior to the ones based on the friction velocity. The effects of turbulence augmentation and pressure 
gradient on the velocity and temperature distribution are studied, It is found that the solutions tend to 

approach solutions for limiting cases. The results are plotted in some figures in Section 5. 

NO~NC~~~ 

a constant in the equation for 
length scale of dissipation ; 
a constant in the equation for 
length scale of viscosity ; 
the dissipation constant in the 
turbulence energy equation ; 
the turbulent viscosity constant ; 
the dissipation of turbulence 
energy ; 
flux; 
turbulence energy ; 
length scale of dissipation; 
length scale of viscosity ; 
pressure gradient parallel to the 
wall ; 
Reynolds number zz (~(k)y~/~); 
friction coefficient rz ~~y/~u ; 
Stanton number E txIsy/& ; 
mean velocity parallel to the wall ; 
fluctuating velocities ; 
distance normal to the wall. 

Greek symbols 
r, conserved property transport co- 

efficient ; 

Subscripts 

e, 
G, 
k, 
S, 
4 
+, 

the d~ensionless turbulent vis- 
cosity ; 

= I.&; 
the laminar viscosity ; 
the density ; 
the Prandtl number ; 
the shear stress ; 
a conserved property. 

effective ; 
at the outer edge of the layer ; 
for the turbulence energy ; 
on the wall ; 
turbulent ; 
dimensionless quantities based on 
the friction velocity. 

1. INTRODUCTION 

THIS paper deals with the influence of turbulence 
on the flow near solid walls, when the state of 
the fluid at any point can be expressed as a 
function of the distance from the wall only. The 
investigation of such flows constitutes an impor- 
tant stage in the development of solution pro- 
cedures for two-dimensional turbulent flows. 
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Firstly because in this mathematically simpler 
configuration it is easier to formulate turbulent 
viscosity hypotheses, and compare their impli- 
cations with experimental data. Secondly be- 
cause we can save a considerable amount of 
computer time in the computation of two- 
dimensional flows, ifwe employ one-dimensional 
Fsolutions in the vicinity of solid walls, where, 
due to the existence of a boundary-layer, a 
large number of mesh points is otherwise 
necessary (Wolfshtein [l]). 

Another advantage of the present investiga- 
tion is that one-dimensional flows are frequently 
met in engineering. The turbulent “logarithmic 
law of the wall” is the most common of such 
flows, but in fact all fully developed flows in 
plane or axially-symmetrical ducts with uniform 
cross section are one-dimensional ; and in 
many cases important regions of more complex 
flows are very nearly one-dimensional as well. 

In the past the Prandtl mixing-length hypo- 
thesis was extensively used in treatment of such 
flows. Its application in the fully turbulent 
region results in the logarithmic law of the wall. 
Van-Driest [2] suggested a way to extend the 
mixing-length hypothesis to the laminar sub- 
layer, and Patankar [3] used an extended form 
of van-Driest’s proposal to obtain a generalised 
solution of one-dimensional flows. However, 
the mixing-length hypothesis, even in its most 
developed form, suffers from a number of 
drawbacks, the most important of them are: 

(i) It is valid only when local equilibrium 
exists between generation and dissipation of 
turbulence. 

(ii) It implies zero turbulent exchange coeffi- 
cients in regions of zero velocity gradients. 

(iii) It has not been proven to be an effective 
tool in two-dimensional situations. 

Obviously, the above limitations are a direct 
consequence of the inflexibility of the mixing- 
length hypothesis, by which the state of turbu- 
lence of the fluid is assumed to be dependent 
on the velocity field, and one additional quantity, 
the mixing length. The mixing length is usually 

assumed to be related to the geometry of the 
flow. Therefore we can not prescribe the turbu- 
lence level, nor investigate turbulence aug- 
mentation when we use the mixing-length 
hypothesis. 

In the present paper the Kolmogorov [4] 
Prandtl [5] turbulence-energy hypothesis will 
be used. In this hypothesis the local state of 
turbulence of the fluid is assumed to depend on a 
length scale and on the kinetic energy of the 
turbulent velocity fluctuations.* The hypothesis 
has already been used for the solution of one- 
dimensional and boundary-layer problems in a 
number of cases. Emmons [6] presented the 
hypothesis in a very straightforward manner, 
and obtained some solutions for flows away 
from walls. Glushko [7] used two different 
length scales for turbulence generation and 
dissipation near walls, but his expressions were 
somewhat obscure. He did not try to investigate 
turbulence augmentation. Spalding [8, 91 tried 
to obtain analytical solutions by the use of a 
distinct boundary between the laminar sublayer 
and the fully turbulent region, and a discontinu- 
ous eddy viscosity. 

The purpose of the present paper is two-fold : 
Firstly, to present the implications of the hypo- 
thesis, for one-dimensional flow, in a convenient 
and general form, applicable to both the laminar 
sublayer and the fully turbulent region. Secondly, 
to study the effects of turbulence augmentation 
on one-dimensional flows. 

The present paper is restricted to steady 
incompressible turbulent flow with uniform 
properties. We shall be concerned with the three 
second order differential equations for the 
velocity, u, a conserved property, cp, and the 
turbulence energy, k. Of these, the first two may 
be analytically integrated once. The second 
order turbulence energy equation will be solved 
by a numerical iterative method. The two first 

* An implication of this hypothesis is that the turbulent 
viscosity is a scalar. This is true in one-dimensional flows, 
but not in two- and three-dimensional ones. However, 
the hypothesis is usually assumed to be a reasonable 
approximation also in two-dimensional flows. 
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order equations may be numerically integrated at y=O u=cp=k=O; 

without iterations. Details of all these operations 
are described in Section 2. Section 3 is concerned (2.51 
with some analytical solutions for hmiting 
cases, and in Section 4 numerical values are at y = YG k = kc (2.69 

assigned to all the necessary empirical constants. 
The results of computations of Couette and duct 

where rs and Js are the skin friction and wall 

flow are described in Section 5. The influence of 
cp-flux respectively and k, is given. The value of 

turbulence augmentation and pressure gradient 
yc will be always large enough to ensure that a 

on the velocity and conserved property distri- 
part of the fully turbuleut$ region is included 

butions in a Couette flow is studied, and com- 
in the integration. 

parison with recent duct flow data is made, 
Further discussion and conclusions are pre- 

The turbulent quantities 

sented in Section 6. 
In order to obtain a solution to equations 

(X$ (2,3) and (2.4& we must relate the q~~tities 
2. THE ~~~~~ ~~A~UN T,, J,, Jk, t and D to it, 43 and k. To do this we shall 

The conservation equations use the Kolmogorov-Prandtl model of turbu- 

We consider a llow parallel to a wall, where all lence. We shall sum here the implications of this 

the quantities are not varying in the directions model, as presented by Wolfshtein [l] : 

parallel to the wall. The treatment is restricted 
to steady, ~ifo~-prope~y incompre~ible flow. 

da 
P-7) 

We wish to predict the time-averaged velocity M, 
a time-averaged conserved property cp, and the 
turbulence energy k, which is defined as 

r, = at-& 

J =k!&t f 
cr dy w-3) 

All these quantities are dependent on the dist- 
ance from the wall, y, and the fluid properties. 
The governing equations do not contain any 

,u* = c&“l P (2.10) 

convective terms, and may be shown to be; 
(2.11) 

wfiere 6, gk+ C,,, C, are empirical constants, 
and tP and l, are the length scales for turbulent 

(2.3) diffusion and dissipation respectively. 
It is more convenient to define effective trans- 

port properties, as follows : 

where Jt and Sk, t are the “diffusional” fluxes of 
q and k respectively due to the turbulent fluctu- 
ations ; z, is the Reynolds stress ; p’ is the pressure 
gradient parallel to the wall ; D is the dissipation 
of turbulence energy into heat; p and F are 
the laminar transport coefEcients for momentum 

(2.13) 

t in a duct flow equation (26) is replaced by 

dk 
atr=y,---0. 

and conserved property respectively. The bound- dY 

ary conditions for these equations are : 
% The fully turbulent region. is this region where the 

laminar transport properties have: no influence on the flow. 
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(2.14) 

where u is the Prandtl number. 
By substitution of all these relations in 

equations (2.2), (2.3) and (2.4), and integration 
of equations (2.2) and (2.3) we get 

du 

+LJ 
edy ’ 

(2.16) 

(2.17) 

The turbulence length scales 
We shall not, at present, write a differential 

equation for I, and 1,. Instead, we shall devise 
empirical functions to describe them. Near solid 
walls both are known to be proportional to y. 
It was also suggested (e.g. by Glushko [7] and 
Spalding [8]) that in the laminar sublayer both 
these quantities should be proportional to 
R . y, where R, the Reynolds number of turbu- 
lence, is defined as 

k*Yp RE----. 
p 

(2.18) 

An examination of equations (2.4), (2.10) and 
(2.11) reveals that, without any loss of generality, 
we may choose the empirical coefftcients C, and 
CD in such a way that, in the fully turbulent 
region 

1, = 1, = y (2.19) 

1, is proportional to 1, also in the laminar sub- 
layer, but we cannot expect them to be equal 
there. Therefore, in the laminar sublayer 

1, = A,Ry (2.20) 

1, = Apy. (2.21) 

Information about the intermediate region 
where both equation (2.19) and equation (2.20) 

or (2.21) are inaccurate is very scanty. However, 
1, should have some similarity to the Prandtl 
mixing length. Therefore we shall use expres- 
sions similar to that proposed by van-Driest [4] 
for the mixing length, i.e. 

1, = y[l - exp (- A,R)] (2.22) 

1, = y[l - exp (- A,R)]. (2.23) 

These two expressions satisfy equations (2.19), 
(2.20) and (2.21). They are likely to be a fair 
approximation of 1, and 1, also in the transition 
region between the laminar sublayer and fully 
turbulent layer. 

Non-dimensional quantities 
Equations (2.15), (2.16) and (2.17) may be non- 

dimensionalised by the use of the following 
dimensionless groups : 

k ,kp + 
7s 

The equations then are 

(1 + s)2 = 1 + p+y, 
+ 

1 

(2.24) 

(2.25) 

(2.26) 

(2.27) 

(2.28) 

(2.29) 

(2.30) 

(2.31) 

(2.32) 

(2.33) 
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8 = C&,(,/k+) y+ 

with the following conditions 

at y, = 0 U+ = rp, = k, = 0 

at y+ = YG+ k+ = kG+ 

L, = 1 - exp C-4&/k+h.l 
LD = 1 - exp b&A./k+) y.1. 

It should be noted that many of the 

(2.34) 

(2.35) 

(2.36) 

(2.37) 

(2.38) 

(2.39) 

above 
quantities contain zs. When zs vanishes, y, and 
40 + will, therefore, vanish as well, while u + and 
k, will become infinite. In order to avoid such 
c~c~st~~s, it is preferable to present the 
results in terms of the following dimensionless 

groups 

R = y+ Jk, (replacing y+) (2.40) 

s = Y+/U, (replacing u +) (2.41) 

S = ~Y+lcp+ (replacing cp+ f (2.42) 

k, may not be altered in this way, and we shall 
continue to use it. It will be seen in further 
sections, however, that this set is satisfactory 
even when rs vanishes. 

Solution method 
To sum up, we wish to present k+, s and S as 

functions of R, and of the two parameters p+ 
and kte Now, equations (2.32) and (2.33) may 
be very easily integrated. However, we need to 
solve equation (2.34) first. The equation may be 
solved by finite difference technique. A typical 
section of the mesh is shown in Fig. 1. The 
fmit~diffe~n~ counterpart of equation (2.34) 
may be written as 

Dk+,p = A: ,E + Bk+,w + C (2.43) 

A I 

u+ P* ’ t 4v 

We _.-I._- 
RG. 1. The finite-difference mesh. 

where 

(2.44) 

(2.45) 

(2.46) 

(2.47) 

The numerical solution of equation (2.43) does 
not present any diffkulties. It was solved by a 
successive elimination process, described in 
[lo], p. 97. 

3. SOlW ANALYTICAL ~L~ONS 

In general, equation (2.34) cannot be solved 
analytically. However, we may obtain analytical 
solutions to some limiting cases, and they are 
worth studying. 

The non-dz~sion~~ layer 
When y becomes very large, and the pressure 

gradient vanishes, we may write 

t”e = C,P( Jk) Y @ P 

1, = i, = y 

rk,t = 2t( Jk) YP. 

(3.1) 

(3.2) 

(3.3) 
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In these conditions, a particular solution of The solution of this equation is 
equation (2.34) is 

k, = (C&J-+. (3.4) 
k, = AR* (3.11) 

The solutions of equations (2.32) and (2.33) may 
where A is an integration constant, t and 

then be written as B=J(4C,/&+l)+l 
(3.12) 

0 C,* R L 

S= 

CD ln [WC,G)*l (3.5) It also follows that 

s= ~l~o(C,G)* R 
P + C$C;* In [E(C,C,)* R] (3’6) 

where E is an integration constant, and P is the 
resistance of the laminar-sublayer to q-transfer, 
described by Spalding and Jayatillaka [ 111. 

E = C,ApAh(y+)A (3.13) 

1 R 
-cl+%,, (3.14) 
S 

s = 1. (3.15) 

The linear shear layer 
When y becomes very large and the skin 

friction vanishes, equations (3.1), (3.2) and (3.3) 
still hold. Spalding [9] showed that in this case 
the solution to equations (2.34) and (2.32) is 

The no-generation layer 
In a fully turbulent layer, and when the shear 

stress is small, equation (2.34) reduces to 

Spalding [9] had shown that the solution of 
this equation, for large values of y + is 

k, = ay”, (3.17) 

where 

(3.18) 

and a is an arbitrary constant. It may be easily 
shown that 

The laminar sublayer 

2m 
k, = const % R2’mp (3.19) 

In the laminar sublayer, where y is very small, s = const x R& (3.20) 

Peff = P 9 Pt (3.9) s = const x s. (3.21) 

and 
4. EVALUATION OF THE 

1, = A,Ry (2.20) EMPIRICAL CONSTANTS 

1, = A&y. (2.21) In the presentation of the problem (section 2) 
we defined five empirical constants associated 

Therefore equation (2.34) reduces to : with the turbulence energy equation, namely 

d2k+ C,k+ 

dyt=A,y: 
(3.10) t The second integration constant is zero because a 

negative value for B is non-realistic. 
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c,, CD ak, t, A,, and A,; we also used one 
empirical constant crV,t in the conserved prop- 
erty equation. Obviously these constants must 
be determined from experimental results. How- 
ever, there may be, in principle at least, more 
than six different sources of appropriate data, 
and our success to correlate with the present 
hypothesis as many of these data as possible 
will be also a measure of the validity of the 
hypothesis. Such a critical review is beyond the 
scope of the present paper, mainly because the 
amount of reliable experimental data available 
is very limited. Instead, the author tried to 
demonstrate that once a set of data is available 
the constants may be fixed fairly simply and 
reproduction of experimental results is possible 
then. For this purpose the following data was 
used : 

(i) The constants E and x in the logarithmic 
law of the wall (see Schlichting [12]) 

m+ = ln(Ey+) (4.1) 

where x = 0.4, E = 9. 
(ii) The constant K, in the veloicity profile in 

the linear shear layer 

2 ’ 
24 = - 

d > 
Q + const. 

&I P 
(4.2) 

This constant was recommended by Townsend 
[13] as 

K,, = 0.48. 

(iii) The constants a and c1 in the turbulent 
viscosity profile for the laminar sublayer : 

Pt - = u(y+)a. (4.3) 
p 

These may be deduced from a paper by Spalding 
and Jayatillaka [ll] as a = 8.85 x 10e5 and 
a = 4. 

(iv) The empirical P function describing the 
resistance of the laminar sublayer to heat 
transfer in a uniform-shear layer. This function 
was reported by Spalding and Jayatillaka [ll]. 
The relation (iii) is derived from the asymptotic 
relation for the “Y-function at high Prandtl 
numbers, but we may still use the P-function 
correlation at low Prandtl numbers. 

Summing up all the above data, we note that 
they are not known accurately and without any 
doubt. However, we shall use them to obtain 
tentative values of the 
theory. When the data 
good fit is obtained for 
the constants 

constants used in the 
of (i) to (iv) is used, a 
the following values of 

c, = 0.220 

c, = 0.416 

0 k,t = 1.53 

A, = 0.016 

A,, = 0.263 

fl,,, = 0.9. 

Equations (4.2) and (4.3) are automatically 
satisfied by these values. The tit of the logarith- 
mic law of the wall and the P-function are 
shown in Figs. 2 and 3, respectively, and is good. 

It is of interest to compare these constants 
with those deduced from earlier work. We shall 
compare the results to those recommended by 
Wieghardt in an appendix to Prandtl’s [5] 
paper, those recommended by Glushko [7], 
and two proposals by Spalding [S, 91, as given 
in Table 1. 

Table 1 

Wieghardt 

PI 

0.224 
0.45 
1.47 

Glushko 

c71 

0.2 
0.313 
2.5 
0.009 1 
0.080 

Spalding 

PI 

0.2 
0.313 
1.7 

Spalding Present 

r91 work 

0.179 0.22 
0.224 0.416 
2.13 1.53 
0.0315 0016 
O-112 0.263 
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FIG. 2. Computed and measured velocity profile in a 
uniform-shear no-diffusion Couette flow. Data reported by 

Schlichting. 

o- 

FIG. 3. Comparison of the P-function in a uniform-shear no- 
diffusion Couette flow with Spalding and Jayatillaka’s 

recommendations. 

The differences in Table 1 seem to have 
originated from two causes: first, that different 
sets of experimental data were used, and second 
that the integration method, the length scale 
distribution, and the methods for the choice of 
optimum values were different in each work. 
Once that more experimental data becomes 
available it will become necessary to repeat the 
above process of constant fitting. However, the 

author believes that the present method of 
constant-fitting is superior to other ones because 
it does not involve any mathematical simplifica- 
tions, and it can accommodate any necessary 
physical hypothesis. 

Another interesting comparison is that of the 
length scales distribution near the wall. In Fig. 4 
the present I, and I, distributions are compared 
with the implications of previous suggestions by 
Glushko [7] and Spalding [S]. There are 
differences between the three suggestions, which 
may be explained, at least partially, by the 
different hypotheses and by differences in the 
experimental data used by each of the three 
authors. The only way to determine the true 
values of the constants in equations (2.22) and 
(2.23), is by reference to more experimental data, 
when it becomes available. 

It would be helpful to sum up what we have 
achieved until this point. An equation for the 
turbulence energy in one-dimensional flow was 
formulated, which is valid in the laminar sub- 
layer, as well as in the transition and turbulent 
layer. And all the necessary constants have been 
evaluated on the basis of experimental data. So, 
we may now investigate some general solutions 
to this equation. This task will now occupy the 
rest of the paper. 

5. RESULTS OF THE NUMERICAL 
INTEGRATIONS 

Couettejlow without pressure gradient 
We shall study first a one-dimensional flow 

without pressure gradient. In this case all the 
fluid properties are functions of the single space 
dimension with a single free parameter, namely 
the level of turbulence inside the layer. The 
solutions were obtained numerically, as des- 
cribed in Section 2. In Fig. 5 the k, N R 
relation is displayed. We can easily identify 
equation (3.4), as the horizontal line for a non- 
diffusional layer; equation (3.11) agrees very 
well with the laminar sublayer predictions, to 
the left of the figure, while equation (3.19) is 
seen to describe the upper right-hand side of 
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Ffc. 4. Comparison of length scale distributions. 

In this region equation 

FIG. 5. k, * R relation in a uniform-shear Couette Row. 
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FIG. 6. s N R relation in a uniform-shear Couette flow. 

the figure. An interesting feature of the figure is 
that when the turbulence level in the Iayer 
increases, the flow approaches that of a no- 
generation layer, presumably because the turbu- 
lence generation vanishes, together with the 
velocity gradient. 

We still have to attribute a convenient scale 
of the turbulence level to each of the lines in 
Fig, 5. We notice that apart from the single line 

describing the non-diffusional layer, each line is 
satisfying equation (3.19) in the upper right-hand 
side of the figure. Therefore, the constant in 
equation (3.19), now denoted “Q”, may serve as 
the scale of the degree of turbulence of the layer. 
We may now turn our attention to Fig. 6, where 
the s N R relations are displayed for varying a. 
Again, the asymptotic solutions, equation (3.5), 
(3.14) and (3.21) are evident. The interesting 

FIG. 7. S - R relation in a uniform-shear Couette flow. 
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feature of this figure is the fact that when a is 
increased beyond, say, 0.5 the s N R relation 
does not change any more. 

In Fig. 7 the S N R relation is shown for 
c = 0.7. The effect of increasing the Prandtl 
number is mainly to shift the S w R lines to the 
left. In all other respects Fig. 7 is similar to 
Fig. 6. 

A more conventional represen~tion of the 
s N R relation is in the form of U+ w y+ 
relation, shown in Fig. 8. As may be expected, 
an increased level of turbulence flattens the 
velocity profile. 

The term equilibrium is used in the present 
section to describe a Couette flow in which the 
bruundary condition in the outer edge of the 
fIkv has no influence on the flow. Such be- 
haviour is possible in either of two cases: (i) 
when the boundary is very far away from the 
wall (in this case equilibrium will be maintained 

near the wall and, as we shall soon see, in the 
middle of the layer, but not near its outer edge); 
(ii) when an ~uilib~um boundary condition is 
specified (this amounts to the use of equation 
(3.7) as a boundary condition for the turbulence 
energy equation in very large distances from the 
wall). In order to demonstrate that an equi- 
librium flow does exist, various solutions for 
the same pressure gradient p+ = O-05 were 
plotted in Fig. 9. It is clearly seen that as long as 
the boundary value of the turbulence energy is 
lower or slightly higher than the equilibrium 
value the turbulence energy profile approaches 
its equilibrium state quite rapidly. This is not 
true, however, for very high boundary values of 
the turbulence energy, which result in a turbu- 
lence energy profile higher than the equilibrium 
one. There is no equilibrium state for negative 
pressure gradients. 

On the basis of the above discussion it is clear 
that, in an equilib~um flow, k,,, must be a 
unique function of y ,, G and F+. Thus, u+ and 

YJP r. 
Yt’ - 

P 

Fki. 8. u+ N y, relation in a uniform-shear Couette flow. 
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FIG. 9. k, w R relation in equilibrium flow for p+ = 0.05. 

k, are functions of y, and only onefree para- 
meter, p+ ; ‘p+ is then a function of y, and the 
two parameters p+ and CJ. 

The equilibrium functions of k, and s are 
plotted in Figs. 10 and 11 as functions of R for 
various values of the parameter p+. We note 
that when p+ becomes large the flow may be 
described by the equations for the linear shear 
layer (3.7) and (3.8). No solutions are presented 
for a negative pressure gradient. 

The equilibrium S N R function for (r = 0.7 
is presented in Fig. 12. It has some similarity to 
Fig. 7, which displays the S N R relation for a 
uniform-shear layer. This similarity is more 
apparent for small p +. But even when F + is 
large the S values are not very different from 
those shown in Fig. 7 for corresponding values 

of turbulence, and the general asymptotic be- 
haviour is similar. 

The combined eflect of pressure gradient and 
augmented turbulence 

We must now distinguish between positive 
and negative pressure gradient. In the first case, 
if the level of turbulence in the outer edge of the 
layer is below the equilibrium one, most of the 
layer will become an equilibrium flow, with 
deviation from equilibrium only near the outer 
edge. If the level of turbulence in the outer 
edge is much higher than the equilibrium one, 
the flow will be identical with the one with a 
zero pressure gradient, but with turbulence 
augmentation. 

When the pressure gradient is negative, we 
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Id- 

FIG. 10. k, - R relation for equilibrium Couette flow. 

concern ourselves only with that part of the 
layer where the shear stress is still positive. And 
in this part, again, the flow is always similar to 
the one without any pressure gradient, but with 
augmented turbulence. 

Duct jlow 
The last solutions which we consider are for 

fully developed turbulent duct flow. It has been 
widely accepted that the flow near the walls of 
a duct is similar to a Couette flow. There is, 
however, a negative pressure gradient, and a 
diffusion of turbulence energy from the bound- 
ary layer, near the wall, towards the centre of 
the duct. 

In the present problem there is only one 

parameter, namely the Reynolds number.? 
The pressure gradient is uniquely related to 
the skin friction (which is a function of the 
Reynolds number) ; and in a fully developed 
flow there is only one possible value of the 
turbulence energy on the centre-line. 

The k, - R and s N R relations are plotted 
in Figs. 13 and 14 respectively, for various 
Reynolds numbers. Also plotted are some 
experimental data reported by Clark [14]. 
It will be noted, that near the wall, where say 

t The Reynolds number will bc based on the maximum 
velocity and duct half width. 
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FIG. 11. s N R relation for equilibrium Couette flow. 

the flow is practically identical with a Couette 
flow without pressure gradient. In this region 
the present results are near to the experimental 
data, but not identical to it. However, if we 
recall the experimental difficulties which are 
present when measurements of u’ and U, are 
performed by a hot wire anemomenter, we 
should not, perhaps, attempt a better agreement 
than has been achieved. Moreover, Clark’s 
constants in the law of the wall are quite different 
from the ones used in the present paper, and 
this fact may be responsible for the deviations. 
The agreement in the outer region is reasonable. 

6. DISCUSSION 

The turbulence energy hypothesis. It has been 
shown that the present version of the hypothesis 
is general and flexible enough to enable pre- 

dictions for a large variety of cases, without 
any special practices for the laminar sublayer. 
However, the accuracy of the predictions can- 
not be any better than that of the data used 
for constants fitting. At present the data is 
not reproducible. Even the constants x and E 
in the logarithmic law of the wall tend to 
change from one experimental work to the other. 
Values of 04044 have been suggested for x, 
and anything from 6 to 12 for E. It has been 
shown, however, that if we have the appropriate 
data, the theory may help us to screen it, and 
to explain some of the tendencies which are 
often found in such data. Moreover, the existence 
of this theory may promote some experimental 
work which may resolve some of the above 
difficulties. 

The influence of turbulence augmentation. It 
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FIG. 12. S - R relation for equilibrium Couette flow. 

has been shown that turbulence augmentation An examination of Fig. 5, 6 and 7 reveals 
has a very marked influence on the velocity that the solutions for a zero pressure gradient 
and temperature distributions in the fully may be correlated into algebraic relations 
turbulent region of a Couette flow. However, quite easily. Such correlations have been ob- 
the laminar sublayer remains unchanged until tained by the author [l], in connection with his 
a fairly high rate of turbulence augmentation work on two-dimensional flows. It is not 
is reached. necessary to present these correlations here, with 

FIG. 13. k, - R relation for a duct flow. Experimental data by Clark. 
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FIG. 14. s - R relation for duct flow. Experimental data by Clark. 

one exception: the S(R, k,) function in the 
fully turbulent region, and for (T = 0.71, with 
turbulence level larger than that of the non- 
diffusional case, may be correlated by 

S = 0.139y;58k~29 

in the vanishing-generation case, and 

(6.1) 

S = 0.09y;86k;09 (6.2) 

in the case of finite turbulence generation. These 
equations show that for small and medium 
turbulence augmentation S is almost independent 
of the level of turbulence. Kestin et al. [15] 
measured the influence of the level of turbulence 
on heat transfer in a zero-pressure gradient 
Couette flow with relatively low level of tur- 
bulence. They reported no influence of the 
level of turbulence on heat transfer in these 
conditions. 

A note on experimental data. The scarcity of 
appropriate experimental data has already been 
mentioned. The existence of the present theory 

may, perhaps, stimulate further measurements 
of the kinetic energy and other fluctuating 
quantities. Such data will enable a better choice 
of the empirical constants to be made, and will 
also serve as a check on the suitability of the 
present hypothesis. 

Some further theoretical work. The present 
model may be further developed as to include a 
differential equation for the length scales, and 
to account for non-uniform distribution of the 
Prandtl numbers, if new experimental data 
justifies such steps. 

7. CONCLUSIONS 

(1) The hypothesis, and in particular the 
present forms of the Reynolds stresses, the 
turbulence energy dissipation and the turbulent 
length scales seem to be in accord with the 
available experimental data for one-dimensional 
flows. 

(2) The choice of k,, s, S and R as variables 
instead of k,, u,, (p+ and y, seems to be 
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justified, because it enables us to cope with 
cases of zero skin friction, and because it 
cc&&s the results between limiting lines, 
thus reducing the spread of the results. 

(3) The effect of turbulence augmentation on 
any flow is ta reduce the turbulence generation. 
When the augmentation is sufficiently large 
the flow is identical to a zero shear one. In this 
case the s N R and S N R relation are not 
dependent on the turbulence augmentation 
any more. 

(4) Adverse pressure gradient increases the 
turbulence level. The combined effect of the 
pressure gradient and of this increased turbu- 
lence is to lower the s vaiues at a ftxed R, 
without a limit. However, the combined effect 
on S, for a fixed R, is similar, qualitatively at 
least, to that of turbulence augmentation ore a 
uniform shear flow. 

(5) Flows with small favourab~e pressure 
gradient (when the shear stress is stilt positive) 
are very similar to uniform-shear fIows. 

(6) A low turbulence level in the outer 
boundary results in an equilibrium flow, appro- 
priate to the pressure gradient in question. 

(7) The existence of the present theory makes 
further measurements of turbulence energy 
and fluctuating quantities very desirable. 
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Rb&-L’hypoth6se de i’bnnergie turbulente de Kolgomorov-Prandtl est formu& d’une FaGon vafabte 
pour la sous-couche laminaire aussi bien que pour la region entierement turbulente d’un icoulement uni- 
dimensionnel. Les constantes nkcessaires sont ajustees aux dam&s expkrimentales disponibles. Des 
solutions numeriques sont obtenues pour l’bcoulement de Couette avec augmentation de la turbulence et 
gradient de pressio~~ et pour I’&coulement turbulent en conduite. On a obtenu un accord raisonnable avec 
les don&s exp&mentales disponiblea Certains nouveanx groupes sans dimensions sent empIoy&s 
et t’on montre q&its sent sup&ems z1 ceux bas&s SIX la vitesse de frottement. Les effets de l’augmentation de 
la turbulence et du gradient de pression sur les distributions de vitesse et de temperature sont Cud& 
On trauve que les solutions tendent vers les solutions pour les cas limites. Les r&suttats sant port&s sur 

quelques figures dans la cinquBme section. 
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Zusammenfaasung-Die Turbulenz-Energie-Hypothese von Kolomogorov-Prandtl ist so formuliert, dass 
sie ftir die laminare Unterschicht genauso gilt wie fur den voll turbulenten Bereich einer eindimensionalen 
Striimung. Die erforderlichen Konstanten werden den verfiigbaren Versuchsdaten angepasst. Numerische 
Losungen werden fiir die Couette-Str~mung mit TurbuIen~nstieg und Druckgradient und ffir turbuiente 
R~hrstr~mung erhalten. ZufriedensteIlende ~ereinstimmung mit verfiigbaren ex~rimentellen Werten 
wurde erreicht. Einige neu verwendete dimensionslose Gruppen erweisen sich jenen tiberlegen, die auf der 
Reibungsgeschwindigkeit beruhen. Die Einfhisse des Turbulenzanstiegs und des Druckgradienten auf die 
Geschwindigkeits- und Temperaturverteilung wurden untersucht. Es zeigte sich, dass sich die Losungen 

Grenzfall-Liisungen nlhem. Die Ergcbnisse sind in Abbildungen im Abschnitt 5 wiedergegeben. 

AEiHOTaqHSI-hil?OTWa HOa~OrcrpOBit-~paHnTnR 06 aHepI’H&f Typ6y~eHTHOCT~ CfPOMyJlEIpO- 

BaHa B TaKOM BBJJ,f_?, YTO OHa C~paB~A~~Ba ,QJIK ~aM~HapHOr0 ~O~C~O~ TtUQKKB KaK II f&Jlrt 

~0~~0~~b~p33B~TO~Typ6y~eHTiIO~ o6zacTH ~~ocKor0 Te4eHHR. Heo6xo~~M~e ~OCTOKHH~e 

XOpOWOCOrnaCyKfTCRCIIMeH)~HMIICII~)KC~epIIMeHTaJIbHblMHAaHH~MCI.nOjlyYeHbIsllcneHHhIe 

pe3yJlbTaTbI AJIH IIOTOKa Ky3TTa iIPM )'BeJIRYeHW Typ6J'JleHTHOCTU M HEUIHWIH rpaJVIeHTa 

gaeneam,a TaKxe RJIR: Typ6yJIetYTH,no TeqeHm B Kalrane. rIonyseH0 xopomee comaneme 

C MMeIOIQHMHCR 3KCIIepIlMeHTaJlbHbMl' ,WHHbIMH. ~CIIOJIb3ylOTCH HeKOTOpSJe 6e3paaMepme 

rpynnu II noKaaaK0, YTO om sbwc&L -, PTJiElYElKlTCR OT I’pyIHl, OCHOBaHHblX Ha CKOPOCTM 

TpeHHSf. Haysaercrf mrrrrxrrrre yBe~~qeH~~ T~~6y~eHTHocT~ ki rpaaema xasxefim Ha pacnpe- 

gesreme CKO~OCT~ a Te~~epaTyp~. Ha@.wo, 9~0 pewemx cTpeaFtTcfi K pe~eH~~~ nnfi 

npeaeJrbmx cjryqaefl, PesynbTaTzd ~Pe~cTaB~eH~rpa~~~ecK~. 


